Force Tracking Impedance Control with Variable Target Stiffness

نویسنده

  • K. Lee
چکیده

In this paper, a novel force tracking impedance control strategy is presented in which target stiffness is varied on-line to regulate the desired contact force without any knowledge of the environment. Humans can control contact force by adjusting their arm stiffness. The contact force can be either increased by making one’s arm stiffer or decreased by reducing the arm stiffness. Furthermore, humans can keep the force tracking error within a certain range without any knowledge of environmental parameters as long as how much force they exert on the object is known to them. Analogously, the proposed control scheme achieves a contact force regulation control by adjusting the target stiffness of the impedance control. The new force tracking impedance control scheme does not require estimating environment stiffness or locations since the controller is adapted only based on the previous force tracking error between the desired and real contact force. Stability of the proposed scheme is discussed with a quadratic Lyapunov function. Extensive simulation studies with a 7 degree of freedom (DoF) robot manipulator using full arm dynamics are conducted to demonstrate the validity of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stiffness control of a legged robot equipped with a serial manipulator in stance phase

The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...

متن کامل

Force Tracking Impedance Control for Robot Manipulators with an Unknown Environment: Theory, Simulation, and Experiment

In impedance control for force tracking, it is well known that the reference trajectory of the robot is calculated from known environmental stiffness. The authors present a simple technique for determining the reference trajectory under the condition that the environment is unknown. The technique is developed based on the replacement of the unknown stiffness with a function of the measured forc...

متن کامل

Experimental Studies of Impedance Force Tracking Control of a Crack Sealing Robot for Highway Maintenance*

This paper presents experimental studies of impedance force tracking control algorithm for a crack sealing robot. The robot is built to find and seal cracks on the pavement. Regulating contact force improves the performance of cleaning process before sealing. The proposed impedance force control method is robust to perform tasks under unknown surface condition such as stiffness and position of ...

متن کامل

Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffnes...

متن کامل

A Novel Variable Impedance Compact Compliant Ankle Robot for Overground Gait Rehabilitation and Assistance

This paper presents the modular design and control of a novel variable impedance compact compliant wearable ankle robot (powered Ankle-Foot Orthosis, AFO) for overground gait rehabilitation and assistance mainly for stroke patients. Design of AFO, its construction, kinematics, working principle, actuation, control etc. are described. A novel variable impedance compact compliant series elastic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008